
SoaringDigest
Radi   C  ntr  l led

February  2014                                                                                 Vol. 31, No. 2



2 R/C Soaring Digest

February 2014

Vol. 31, No. 2
C

O
N

TE
N

TS
Front cover: Dave Beardsley's High End reaches the peak of its 
climb on tow. Photo by Bill Kuhlman
Konica Minolta Maxxum 7D, ISO 100, 1/500 sec., f8.0, 500mm

  4	 The two Newton ‘sine squared’ laws
The first quantitative theory of wing lift, based in 
Newton's previous theory of comparative ‘resistences’ 
(drags). By Philip Randolph

16	 Repairing a Smooth Genie Pro Fuselage
Text and photos showing Dion Dunn's latest project from 
start to finish.

21	 Designing for the Three Abilities
Chuck Anderson discusses his LilAn II design as a 
reflection of his desire for stability, controllability and 
visibility. (RCSD April 2008 pp. 35-36)

26	 Trim, Slop, Balance
Launch problems? Handling problems?
Gordy Stahl goes through how to make sure the 
problem is not in the elevator.

 Home-made Contour Gauge    30
Another functional tool from Tom Broeski's shop. 

A Rotisserie for Gliders    32
Originally designed and constructed for handling full size 

sailplanes, this fixture can be easily modified to fit large 
scale models and cross-country machines.

By Neal Pfeiffer
(Reprinted from Bungee Cord, the Voice of the Vintage 

Sailplane Association, Volume 39 No. 4, Winter 2013)

Back cover: NASA Image of the Day: In a view from high 
altitude, height can be a difficult thing to gauge. The highest 
of clouds can appear to sit on a flat plane, as if they were 
at the same elevation as the ocean or land surface. In this 
image, however, texture, shape and shadows lend definition 
to mushrooming thunderheads over the Indonesian island of 
Flores. The Moderate Resolution Imaging Spectroradiometer 
(MODIS) on NASA’s Aqua satellite acquired this image on the 
afternoon of December 2, 2013.
<http://earthobservatory.nasa.gov/IOTD/view.php?id=82521>



February 2014 3

One of our earliest articles for RCSD was published in the 
April 1989 issue. It presented a mechanism for achieving true 
gapless control surfaces based on an idea by Harald Buettner of 
PRECOMTEC, presented at a 1986 TWITT (The Wing Is The Thing) 
meeting, and mentioned in TWITT Newsletter #2. A PDF of our 
On the 'Wing... article is available at <http://www.rcsoaringdigest.
com/OTW/on-the-wing1/14GaplessControls.pdf>.

A similar control surface mechanism by FlexSys <http://www.
flxsys.com> is now scheduled for testing on full size aircraft.

Wind tunnel testing at the University of Michigan
<http://www.flxsys.com/fixedwingaircraft.shtml>

FlexSys uses monolithic jointless compliant mechanisms for 
actuation and claims their system is scalable and works with a 
wide variety of materials including metals, GFRP and CFRP.

We can envision applications in F3B, DS and other disciplines.

Time to build another sailplane!

R/C Soaring Digest
February 2014

Volume 31 Number 2

Managing Editors, Publishers		  B2 Kuhlman

Contact		  bsquared@rcsoaringdigest.com
rcsdigest@centurytel.net

http://www.rcsoaringdigest.com
Yahoo! group: RCSoaringDigest

FaceBook: https://www.facebook.com/RCSoaringDigest

R/C Soaring Digest (RCSD) is a reader-written monthly 
publication for the R/C sailplane enthusiast and has been 
published since January 1984. It is dedicated to sharing 
technical and educational information. All material contributed 
must be original and not infringe upon the copyrights of others. 
It is the policy of RCSD  to provide accurate information. Please 
let us know of any error that significantly affects the meaning 
of a story. Because we encourage new ideas, the content of 
each article is the opinion of the author and may not necessarily 
reflect those of RCSD. We encourage anyone who wishes to 

obtain additional information to contact the author.

———

Copyright © 2014 R/C Soaring Digest
Published by B2Streamlines <http://www.b2streamlines.com>

P.O. Box 975, Olalla WA 98359
All rights reserved

———

RC Soaring Digest is published using Adobe InDesign CS6

In the Air

mailto:bsquared@rcsoaringdigest.com
mailto:rcsdigest@centurytel.net
http://www.rcsoaringdigest.com
https://www.facebook.com/RCSoaringDigest
http://www.b2streamlines.com


4 R/C Soaring Digest

In his Principia Newton used a ‘sine-squared’ analysis to 
compare the resistances of a sphere and a circular flat plate 
to flows. That’s his first ‘sine-squared’ law. Others, probably at 
least a century later, inserted a ‘scoop’ notion into his analysis 
to build a second ‘sine-squared’ law. It predicted the force of an 
oddly sparse particle flow hitting an inclined plate of fixed area. 
That’s the second Newton ‘sine-squared’ law. From that force 
normal to the plate lift and drag components could be derived. 

This second Newton ‘sine-squared’ law yielded the first 
quantitative theory of wing lift. It’s mentioned in most 
aerodynamic histories. Occasionally it is briefly explained, but 
so briefly that I misinterpreted it three ways before I understood 
it. I actually convinced a Ph.D aerodynamicist of my initial 
misinterpretation. Subsequently I had to explain its correct 
version to a publisher of aerodynamics books and articles. 
An operating systems designer temporarily convinced me 
that Newton had made two mistakes. Not. Misinterpretations 
buzzed like flies. Newton’s analysis was immaculate, if not 
useful outside of shock waves of hypersonic vehicles near the 
edge of space. My experience convinced me that a few brilliant 
aerodynamicists assume that everyone understands the correct 
derivations and what they say, while few do. Hence this article. 

The second Newton ‘sine-squared’ law was initially non-
existent. It was not explicitly derived by Newton. It was only a 
potential implication of Newton’s Proposition XXXIV, in Book II 
of his 1687 Principia. The part of Newton’s Proposition XXXIV 
analysis that dealt with particle impacts on an inclined flat plate 
was only a step in a more complicated analysis. In Proposition 
XXXIV Newton was analyzing drag (‘resistance’) of spheres 
rather than the lift of idealized wings. But it is such an obvious 
byproduct that it is known as Newton’s particle theory of lift or 
as Newton’s ‘sine-squared’ theory of lift.

What Newton made explicit was the force of a single stream of 
particles striking an imaginary inclined flat plate tangential to a 
sphere. He used the trigonometric sine function to get the force 
normal to the plate. He again used the sine function to get the 
component of force in the direction of drag – he was interested 
in minimal drag shapes of ship bows. He didn’t bother with the 
component of force that we call lift for a plate of constant area 
but varying angle of attack. We’ll see that this meant he didn’t 
derive the second ‘sine-squared’ law of the force for flat plate 
‘wings’ of fixed area at angles of incidence. That was by later 
theorists.

The two  Newton ‘sine-squared’ laws
The first quantitative theory of wing lift, based in Newton’s

previous theory of comparative ‘resistances’ (drags). 

Philip Randolph, amphioxus.philip@gmail.com
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Interest in wing lift forces and consequent use of Newton’s 
analysis for lift probably followed Sir George Cayley’s 1804 
experiments in flight and his 1899 silver medallion showing the 
resolution of the total aerodynamic force on a wing into lift and 
drag. Before Cayley interest in forces normal to flow or travel 
was not focused on wings, but on the curve of balls spinning 
on axes crosswise to travel. In 1687 Newton would comment 
on the aerodynamic force that would make a tennis ball curve, 
but only as a brief hypothesizing about the prismatic bending of 
light. In 1742 Benjamin Robins published his experiments on the 
veer (lift) of round shot spinning on an axis crosswise to travel. 
Wing lift was not yet analyzed. 

Newton’s particle impact analysis and each of two ‘sine-
squared’ relations wildly underestimated the forces of flows on 
objects under normal atmospheric conditions. More realistic 
models of flows would wait for later theorists. Still, these were 
the pioneering quantitative theoretical studies of aerodynamic 
forces.  

And the first Newton ‘sine-squared’ relation? Newton did use 
‘sine-squared,’ but in comparison of impacts on spheres and 

on plates normal to flows. We’ll see that this is different from the 
familiar, second, later ‘sine-squared’ derivation of the forces on 
a plate of fixed area at various angles of incidence to flow. 

The purpose of Newton’s Proposition XXXIV was a comparison 
of the forces of discrete particle flows on a circular flat plate 
normal to flow and on a sphere of equal radius. For anyone 
nerdish that’s a fascinating analysis offering perspective 
on the 1687 state-of-the-art. While Newton and Leibniz 
had independently developed the calculus, it wasn’t yet 
the streamlined tool that makes such analysis possible for 
a modern calculus student. (Solving such analyses is more 
difficult. The writing of mathematical truths as equations is often 

much easier than solving the equations.) Rather than a calculus 
analysis, Newton used an elegant trigonometric argument in his 
comparison, using his own, prior, and distinct ‘sine-squared’ 
relation. That’s the second half of this article. 

Newton’s analysis of particle impacts on spheres did lead to the 
‘sine-squared’ law for flat plate lift. So we start with his diagram 
of sphere impacts.

The purpose of Newton’s Proposition 34
was a comparison of the forces of discrete particle flows

on a circular flat plate normal to flow
and on a sphere of equal radius
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Fig. 1: Parsing Newton. Newton’s descriptions can 
be difficult to follow. This should make what he was 
describing clear. 

A simplified model based on explicitly unusual 
conditions 

PROPOSITION XXXIII. Theorem XXVII. 

Cor. 2…in a medium, whose parts when at a 
distance do not act mutually with any force on one 
another, the resistance is in the duplicate ratio1 of 
the velocity…1 

PROPOSITION XXXIV. Theorem XXVIII. 

IF IN A RARE MEDIUM, CONSISTING OF EQUAL 
PARTICLES FREELY DISPOSED AT EQUAL DISTANCES 
FROM EACH OTHER, A GLOBE AND A CYLINDER 
DESCRIBED ON EQUAL DIAMETERS MOVE WITH 
EQUAL VELOCITIES IN THE DIRECTION OF THE AXIS 
OF THE CYLINDER, THE RESISTANCE OF THE GLOBE 
WILL BE BUT HALF SO GREAT AS THAT OF THE 
CYLINDER.2

- Isaac Newton, Principia (On the Shoulders of Giants), 
Edited with commentaries by Stephen Hawking, 1687, 2002

Newton wasn’t attempting every-day realism. Rather, 

 • First, Newton explicitly started with a simplified 
model of atmosphere, a ‘rare medium’ of non-interactive 
particles, such as one might find at 100,000 feet 
elevation, or in the upper atmosphere of Mars. As a 
consequence about the only thing Newton’s ‘sine-
squared’ law comes close to modeling are the shock 
waves around the forward surfaces of hypersonic 
vehicles. The ‘sine-squared’ analysis of resultant forces

1	  ‘Duplicate ratio’ means ‘squared.’ 

“axis ACI”

OQ

A “axis ACI”CI

NG

Proposition XXXIV. Theorem XXVII. Book II. Sec. VII. Newton 
compared the force of non-interacting particles impacting 
on the circular flat-plate end of a cylinder with particles 
hitting a sphere of similar radius. Follow Newton’s wording 
describing the base of the cylinder and direction of impact.  

Newton specifies the comparative forces of impacts on 
cylinder base and sphere as follows: 
“...a particle, falling upon the globe obliquely in the direc-
tion of the right line FB, ...is to the efficacy of the same 
particle falling in the same line perpendicularly on the 
cylinder, to move it in the same direction, as BE   to BC  .” 
The ratio of forces, sphere to cylinder base, is 2/1.   

“...the cylinder 
ONGQ described 
about the globe 
with the axis ACI...” 

“...the circular base 
of the cylinder 
NAO...”(in pink) 

“...a particle, falling... 
in the direction of 
the right line FB...” 
(blue arrows)

2 2

Fig. 1
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would prove highly inaccurate for 
motions in normal atmosphere. 

 • Second, Newton also specified 
inelastic collisions of the particles with 
surfaces. This was probably because 
his simplification was building toward a 
naval application. There the motion of 
fluid particles impacting a ship’s bow 
doesn’t look like an elastic bounce. In 
his simplified model, particles impacted 
a bow, gave up a portion of their 
momentum to it, and slid off tangential

to its surface. If he had been modeling 
lift of flat plates in his ‘rare medium’ he 
probably would have specified an elastic 
collision, and we’d have a ‘double-sine-
squared law,’ since elastic collisions 
impart twice the force of inelastic 
collisions. 

 • Third, but only implied: The collision 
with a surface would be friction free. 
This stems from Newton’s assumption 
that the resultant forces on the target 
object are normal to its surface. It’s not a 
realistic condition for ‘particle impacts.’ 
At a molecular level surfaces are so 

rough that individual molecules hitting a 
surface can impart forces in a variety of 
directions. The average would increase 
‘resistance’ or drag compared to a 
frictionless impact.

These conditions don’t correspond to 
subsonic flight in thick atmosphere. 
Rather, they are a simplification. Much 
mathematical modeling starts with a 
workable simplification and then is 
adjusted toward reality or acceptable 
results. 

Newton was rigorously careful in his 
Propositions to say, ‘Iƒ this were the 
case (a rare atmosphere), then this 
would happen.’ Still, to parody Newton’s 
Principia style, it’s a bit like “If we had 
green eggƒ and ham, therefore, I ƒay, 
Denver omeletƒ would be green. QED.” 

Newton was highly aware of other 
possibilities for the nature of atmosphere. 
In Proposition 35 Newton considered 
three cases of objects moving through 
mediums. First, particles would 
bounce from the object they hit (elastic 
collisions). Second, the particles “are not 

reflected” (inelastic collisions) and the 
object “therefore meets a resistance but 
half so great as in the former case…” The 
third case is mixed.3 

The second case, where discrete 
particles didn’t bounce off surfaces, 
became accepted as one of the 
conditionals of the Newton ‘sine-
squared’ theories. 

And Newton was also aware of a few of 
the other fundamental forces of fluid

dynamics – centrifugal and centripetal 
forces, pressure, and viscosity. Newton 
uses the term ‘pressure’ a number of 
times in Principia, although until Johan 
Bernoulli pressure was conceived of as 
a normal force against surfaces rather 
than as internal pressure. Pressures 
are notably absent in the conditions of 
Proposition XXXIV. Readers will be aware 
that the particle collisions of Proposition 
XXXIV only imply forces on the sides of 
objects facing flows. 

And a century-and-a-half before five 
theorists added viscosity to Leonhard 

Much mathematical modeling starts with
a workable simplification and then is adjusted

toward reality or acceptable results. 
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Euler’s 1752 fundamental equations of fluid dynamics to make 
the Navier-Stokes equations, Newton modeled viscous sheer 
forces: 

“The resistance arising from the want of lubricity.”
Newton on viscosity. 

SECTION IX  
Of the circular motion of fluids.  

HYPOTHESIS. 

THE RESISTANCE ARISING FROM THE WANT OF LUBRICITY 
IN THE PARTS OF A FLUID, IS, CÆTERIS PARIBUS, 
PROPORTIONAL TO THE VELOCITY WITH WHICH THE PARTS 
OF THE FLUID ARE SEPARATED FROM EACH OTHER.4

– Isaac Newton, Principia, Section IX, Book II.

John D. Anderson, Jr., in A History of Aerodynamics, explains 
that the above sentence converted to algebraic notation is 
known as the Newtonian shear-stress law. In a velocity gradient 
the velocity differences per distance-normal-to-flow (dV/dn) 
give rise to sheer friction. The ‘want of lubricity’ translates to the 
viscosity coefficient, µ (mu). τ (tau) is the ‘sheer stress.’ 

	 τ = µ (dV/dn)

Virtually all fluids, including air, exhibit sheer stress. In contrast 
to fictional, ideal, inviscid (frictionless) Eulerian fluids, fluids that 
exhibit sheer stress are known as Newtonian fluids. 5 In contrast 
to his hypothetical ‘rare medium,’ here Newton modeled 
common reality. 

What the second ‘sine-squared’ law says 

The second ‘Newton’ ‘sine-squared’ law, probably from the 
19th century, models the resultant normal force of a discrete 
particle flow impacting on an inclined plate of given area. As 
the plate tips to lower angles of incidence the cross sectional 
area of the flow it ‘scoops’ out decreases, and the normal 
component of individual particle impacts decreases, each by 
the sine of the angle of incidence. Thus ‘sine-squared.’ 

Given Newton’s conditions, the form of the ‘sine-squared’ 

equation for the force on a flat plate inclined to flow is: 

	 R = ρV2A sin2α 

From which the modern components of the resultant force R, 
lift and drag, can be separated. 

	 L = R cos α = ρV2A sin2α cos α 

	 D = R sin α  = ρV2A sin3α 

	 L/D = cos α/sin α = cot α6

where: 

R is the force normal to an inclined plate 

ρ (rho) is density of the particle stream 

S is the total surface area of the plate 

α is the angle at which particles hit the plate. 

Since the sines of small angles of attack are small, the 
‘sine-squared’ is miniscule. Thus the Newton formulation 
unrealistically indicates almost no resultant force (lift and drag) 
at the small angles of attack at which wings fly. 

The derivation is seldom spelled out. It was the first quantitative 
theory of lift and drag, albeit for explicitly unusual conditions. 
There are two questions that need to be answered, Why V2? 
and why ‘sine-squared.’ 

Why V2? 

First, why is velocity squared? We need to have a better answer 
than ‘because Edme Mariotte said so in 1673,’ and better than 
‘everyone knows this is the case.’ 

The momentum impulse (p) transferred by a single particle 
hitting normal to a plate in inelastic collision is: 

	 p = m∆V 

In an inelastic collision normal to a non-moving surface, ∆V (the 
change in velocity) is complete, so 

	 p = mV 

Force (such as lift, drag, or their vector sum R) = ∆m∆V/sec 
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If the velocity of a stream of particles doubles, the momentum 
impulse per particle impact doubles and the mass per second 
also doubles (twice as many particles arriving per second), so 
the force quadruples. If V triples, the momentum impulse per 
particle impact triples and three times as many particles arrive 
per second, so the force R increases by 9. Thus the force of a 
stream of independent particles increases with the square of 
particle velocity. 

	 FStream = mV2/sec = ρV2S 

Interestingly, the same argument works to explain why the 
force of real flows (with pressures from interactive molecules) 
on subsonic wings (and other objects) increases approximately 
with the square of velocity; momentum change per molecule 
and number of molecules per second both increase with 
velocity, so force changes with V2. 

Why ‘sine-squared?’ 

And second, why sine-squared? 

 • The first sine is the ‘scoop’ area A of a plate of area S. As its 
angle of incidence α reduces from 90° to 0° its ‘scoop’ area is 
reduced from S to zero, by: 

	 A = S sin α 

 • The second sine is the component of the flow’s potential 
force which turns into pressure normal to the inclined plate on 
impact. This is given by 

	 R = ρV2A sin α 

Substituting ‘S sin α’ for scoop area ‘A’ gives drag D: 

	 D = ρV2S sin2α. 

Fig. 2: The combination of the ‘scoop’ of a flat plate at some 
angle of incidence to flow and the component of force normal 
to the plate yield the ‘sine-squared’ resultant normal to the 
plate, from which lift and drag may be derived. 

The area ‘scooped’ out by 
a flat plate of area S is 
S sin   .

The component of impact 
force normal to the plate is 
mV   sin   . 

The force R on the plate is its ‘scoop’ area x the normal 
force component of particle impacts:  R = rho V   S sin     . 
Multiplying R by cos    gives the lift component. 
Multiplying R by sin    gives the drag component. 

2 2

2

normal fo
rce R

R = mV  sin 

lift

drag

R

R

2

Fig. 2
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Proposition XXXIV. Newton’s 3D analysis: a 
cylinder circumscribing a parabolic solid as a 
representation of forces! Newton’s comparison 
of resistances of a sphere and its circumscribed 
cylinder

In Proposition XXXIV Newton compared the forces of 
a flow of discrete particles impacting a sphere versus 
those impacting normal to the flat circular-plate base 
of its circumscribed cylinder. It’s a trigonometric 
rather than a calculus argument. 

Newton used four stages in his comparison of 
impacts against plates and spheres: 

 • First, a particle impacting normal to a plate. 

 • Second, a single particle stream impacting at a 
simple angle of incidence to a flat plate (from which 
later theorists derived the ‘sine-squared’ relation for 
the resultant force normal to a flat plate of fixed area 
and varying angle of attack). 

 • Thirdly, Newton derived the force in the 
‘resistance’ or drag direction of a particle stream 
impacting at a simple angle on the surface of a 
sphere. The force normal to the sphere’s surface was 
yielded by 

	 R = mV2 sin α. 

The component of that force in the ‘resistance’ or 
drag direction was Rn sin α. So for drag: 

	 D = ρV2S sin2α. 

Newton took the ratio of a particle hitting a flat plate 
compared to a particle hitting the surface of a sphere 
as sin α to sin2 α. (He wrote “BE2 to BC2” rather than 
using trigonometric terms, even though they were 
already in use and though Newton added to their 

Four stages of Proposition 34, 
inelastic frictionless collisions by particles of a rare medium

A particle strikes a flat plate at right 
angles with force F = mV/sec. 
A stream of particles hits with force 
F = rhoV /sec. 

A particle impacting at a simple angle 
of incidence to a flat plate! & tangential 
to a vertical slice of a sphere. The force 
imparted to the plate and sphere is 
F = mV/sec sin   . The force of a stream 
of particles is 
F = rhoV  A sin   

Newton’s description of the force of a 
stream of particles hitting a sphere (in 
modern terms) was:  F = mV  sin  

Newton made an elegant proof that 
the force in the resistance direction of 
particles hitting a circular plate is twice 
that of particles hitting a sphere. In his 
argument he used a ‘sine-squared’ 
relation. It was not the same as the 
‘sine-squared’ law for flat plate forces, 
apparently developed much later.

2

2 2

2

Fig. 3
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Elastic collision of a stream of particles with a sphere. 
They bounce off at the same angle and velocity of the 
impact. The force R imparted normal to the sphere is 
twice the force of an inelastic collision, or 2h.  

h

R = 2h

h h

h

r
rr

r

r r

A stream of particles glances inelastically off a sphere. 
The force of the particles against a vertical flat plate is:  
F = mV  /sec, and is scaled so F = r. 
The force imparted normal to the sphere is the sine of 
the angle of impact to its surface, which equals h. 
The force                  in the drag direction is 
D = h sin     = sin      = h  . 

@

@h
h h

r
r

r

@

@
h

D

D
22

2

@

h
h
r

Fig. 4

Fig. 5

math.) Newton didn’t construct a calculus equation of the impact of 
particles on a sphere. 

 • Fourth, Newton finally used elegant geometric reasoning rather 
than calculus in his comparison of impacts on a plate versus a 
sphere. 

Fig. 3: Four steps in Newton’s discrete particle impact analysis. 

Fig. 4: Elastic collisions 

Fig. 5: Inelastic collisions  
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The divergence of the two ‘sine-squared’ theories. 

Note that each of the two ‘sine-squared’ theories start by 
taking the normal component of the particle flow by multiplying 
its potential force by the sine of its angle of incidence. That’s 
the first ‘sin α.’ Newton’s second ‘sin α’ gives the component of 
force in the drag direction. That’s Newton’s ‘sine-squared.’ 

Whoever carried the initial argument onto the normal resultant 
force on a flat plate of given area at varying angles of attack 
interjected a different second step into Newton’s process. The 
‘scoop’ area was their second ‘sin α,’ yielding the well-known 
‘sine-squared’ theory for the normal force R. Multiplying R by 
Newton’s second ‘sin α’ yields the drag force on the flat plate 
wing, a sine-cubed relation. Multiplying R by cos α yields the lift 
force, a sine-squared-cosine relation. 

Parsing Proposition XXXIV: Newton’s own ‘sine-
squared’ relation of the resistance forces on a 
plate versus a cylinder. 

…the efficacy of a particle, falling upon the globe 
obliquely in the direction of the right line FB, to move the 
globe in the direction of its incidence, is to the efficacy of 
the same particle falling in the same line perpendicularly 
on the cylinder [base], to move it in the same direction, as 
BE2 to BC2. 

Parse: Newton asserts the ratio of impact forces on the 
cylinder base to those on the sphere as BE2 to BC2. BE/CB 
is sin α. BE2 to BC2 is ‘sine-squared’ α. But its not the ‘sine-
squared’ applied to an inclined flat plate by later theorists. This 
is Newton’s ‘sine-squared,’ for a different purpose, his plate-
versus-sphere comparison. 

And how did Newton achieve this ‘sine-squared’ relation for 
impacts on the surface of a sphere? Newton conveniently 
scaled the force of a single stream of discrete particles 

impacting a sphere as equal to the radius of the sphere. Given 
that scaling, the resultant force normal to a sphere’s surface 
of a single stream of particles impacting it is the local ‘height’ 
of the hemisphere. That is, the resultant Rnp normal to the 
sphere’s surface is: 

Rnp = mV2 sin α 

Newton was computing ‘resistance’ (drag). The drag of a single 
stream of particles Dps is given by the component of Rnp in the 
drag direction: 

Dps = mV2 sin 2 α

Then Newton makes his elegant one-to-two ratio of forces. 
Again, key to his analysis is that he verbally scaled the 
vector representing the force of impact against the cylinder 
base so that its length equals the radius of the sphere and 
circumscribing cylinder. This allows him to represent forces as 
proportional to the volumes of the solids he describes! 

Therefore if in bE…we take bH equal to BE2/CB; then bH 
will be to bE as the effect of the particle on the globe to 
the effect of the particle on the cylinder [base].

Here he splits out BE2/CB as a description of a parabola. He 
rotates the parabola on axis AC to form a solid. He then says 

…and it is known that a paraboloid is half its 
circumscribed cylinder. 

He concludes that the ratio of forces on the sphere to the 
cylinder base are as the volume of the solid paraboloid to its 
circumscribed cylinder, one half.  

That is, the ratio of resistances will be BE/CB x BE/bE. But CB 
and bE are each the radius of the sphere, and equal. BE/CB is 
sin α. Thus he asserts sine-squared alpha as the ratio of globe 
to cylinder resistances. 

   
Newton was computing ‘resistance’ (drag) rather than lift
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D

1

1

h

h
Drag D of a stream of particles 
is proportional to h

h h
r‘

The potential impact force (blue arrow) of a stream of 
particles is scaled to equal the radius of the sphere: 1. 
The inelastic collision makes a pressure force component 
h normal to the sphere surface. Since h = 1sin   , h is equal 
to the height of the circle at radius r’. 
Particle drag D = h sin     = sin      = h  at radius r.  
h   = 1 - r’        (unit circle formula) 
r=0 to 1    2    r’ h  
r=0 to 1    2    r’(1-r’  )    2

2

2

2

2

2 2

2

Fig. 6

Fig. 7

Fig 6: Checking Newton by Archimedes rectangles. Your author 
added the sine-squared average ‘heights’ (h2) of ten concentric 
cylinders times their base areas to approximate the force of 
Newton’s particle flow against a sphere. No surprise. Newton’s 
one-to-two ratio of sphere to circular flat plate resistance was 
indeed correct. 

Other comparisons “by the same method”? 

By the same method other figures may be compared 
together as to their resistance…Which Proposition I 
conceive may be of use in the building of ships. – Isaac 
Newton, Principia, Proposition XXXIV. Theorem XXVIII. 
Scholium.7

Fig. 7: The part of a ship’s bow below the waterline is often 
approximately ellipsoidal. Newton’s ‘resistance’ analysis was 
reportedly applied in ship design, although probably with 
questionable results. Just how it was used and with what 
adjustments is another question.
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OQ

ACI

NG

OQ

A “axis ACI”CI

NG

“axis ACI”

A flate plate is an ellipsoid with 
major axis of zero length. 

A sphere is an ellipsoid with 
major and minor axes of equal 
length. Newton showed it 
would have half the resistance 
of the plate.  

Newton asserted that “by the same method” 
(geometrical comparisons) the resistances of 
other shapes could be derived. 

Fig. 8

“By the same method…” and verifying Newton’s one to two 
ratio of sphere and cylinder base resistences to particle 
flows

I confess I fail to understand Newton’s subsequent argument. 
Was he elaborating on ‘the same method?’ I couldn’t tell. But if 
not, if he were moving on to a different analysis, then perhaps 
by ‘the same method’ he had meant the comparison of the 
resistance of a solid ellipsoid to a flat plate of radius equal to its 
minor axis. (Recall that a sphere is an ellipsoid with equal radii 
of its major and minor axes.) 

Fig. 8: A circular flat plate and a sphere are two points on the 
continuum of ellipsoids. Newton wrote “By the same method 
other figures may be compared together as to their resistance.” 
He may have been referring to the resistance of ellipsoids of 
varying ratios of major to minor axes.

Fig.9 Graph of S. Allmaras’ equation for the resistence of 
ellipsoids to particle flows given the conditions Newton 
specified in his Proposition XXXIV.

Steven Allmaras derived the formula for Newton particle 
resistance for various ellipsoids:  
Cd_ratio sphere to plate = (1 - a2 + 2 a2 Ln[a]) / (1 – a2)2  
He notes: “Where a is the aspect ratio of the ellipse (a = 0 is flat 
circular plate, a = 1 is sphere), and Ln[ ] is the natural log (as 
opposed to log base 10). The equation is fairly nasty for both 
a=0 and a=1, and you have to take limits to get the appropriate 
drag ratio.  The drag coefficient itself is just 2π times the above 
ratio.” – S. Allmaras, Ph.D., email 1/8/14. 

Dr. Allmaras’ equation does verify the accuracy of Newton’s 
trigonometric approach; the resistances of sphere and cylinder 
base to Newton’s particle flows is one to two. QED. 
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To all who have made 
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RC Soaring Digest...

We sincerely appreciate 
your support and your 
continued readership.

<http://www.rcsoaringdigest.com>
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In a sick and twisted kind of way, I actually enjoy repairing an 
airframe almost as much as building it the first time around. I 
think it ties back to my love of old things or preserving things. I 
don’t know.

I cut out the bad sections of the boom/tail and have started 
the reconstruction. Last night I inserted and epoxied a piece 
of 0.060 CF Unidirectional laminate on the starboard side. The 
boom is once again stiff, and in perfect alignment. I won’t close 
it up and finish it off until I get the 0.060 CF push rod installed 
and connected to the bellcrank. Once it is in there, there is no 
going back! 

Photos 1-5

I spliced two 24" pieces of 0.060 CF rod together using a 3/4" 
length of aluminum tube with an 0.060 ID. I roughed up the CF, 
used medium CA, and butt welded it together. Similar story on 
the bellcrank end with the adjustable pushrod end. After it was 
all cured, I did a scientific pull test (ie, pull on both ends as hard 
as I could) to make sure nothing moved. All good.

Photos 6-7

The fuselage already has a straw tube running down the length 
of the interior, so I fed the servo end of the pushrod up to the 
front of the fuselage, and after careful alignment and a tricky 

Repairing a
Smooth Genie Pro

Fuselage
Dion Dunn, dion9146@gmail.com
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bit of twirling of the left hand in a tight spot, I was able to get the new rod 
screwed tight into the clevis which was already attached to the bellcrank.

Photo 8

Oh, I forgot to add that the rudder is pull-pull cable, so no pushrods 
needed. 

Now I can button it all up with more CF, ply, balsa, and glass, paint, and I 
guarantee you won’t be able to see the repair. No cheapo backyard hack 
repairs on my airplanes. If I can’t fly em well, they might as well look good.

After fitting a filler piece of 1/16", 5-layer plywood to the open gap over 
the pushrod, I used Titebond and ordered take-out Chinese...

Then comes another layer of .060 CF uni laminate coated with a nice layer 
of epoxy and cabosil to add some thickening, a piece of SaranWrap, soft 
balsa compression spacer and some clamps. Pretty soon we will have 
both sides equally stiff, then I can start the cosmetics..... 

Photo 9

This morning I removed the clamps and now have a super strong tail 
boom once again.

The next gap I needed to tackle was the bottom. The first thing I did was 
cut a cross grain piece of 1/32" 3-ply to add a bit of strength. Then that 
piece was covered by a piece of contest grade balsa (you know, the really 
lightweight stuff). A quick hit with the micro-plane and fine sandpaper, 
and she is good to go. 

Photo 10 -14

Flip the fuselage over, and I started thinking to myself - I know the 
pushrod moves freely, but let’s make sure we didn’t have any other 
damage to the bellcrank that I don’t know about. So I hooked the stab 
back up for the first time since the accident, and took the following video. 
Honestly, I never thought I’d see that again. Smooth as silk and almost 
zero resistance. <https://www.youtube.com/watch?v=MkLjavGRYNo>

And finally, the top. The front edge of the fin was pretty mangled, so I cut 
it off square and trimmed back some of the fiberglass. In order to fill the 
ugly uneven gap, I mixed up my own filler mix that i have used before. It’s 
a combination of Titebon on balsa dust - yes, I have about a cup of fine 
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balsa dust that I keep around for special occasions. 

Just like any filler, I pressed it into all of the nooks and crannies, and now 
I’ll wait for it to dry. Next up, the cosmetic fillers...

Photos 15-17

I used more of the competition grade balsa to make my short fin and sand 
it to shape. I also added some 1/32” balsa filler strips to build out the 
sides. Then I used lightweight Spackle for the fairing material. It’s light, 
dries fast, and sands easily. Plus, I get the stuff in a tube and it keeps for 
a long time. After a couple of coats of filler and sanding, I was also able to 
get the .5 oz fiberglass skin on it with a first coat of poly. I’ll probably end 
up putting 3-4 coats of poly on it before paint.

Photos 18-20

After a little red spot filler and sanding over the fiberglass, she got a 
couple of coats of paint. I have a tape line on the fin that I will blend in 
with some rubbing compound after the paint hardens, but I think it turned 
out pretty good.

Photo 21
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If I were a serious contest flyer, I would 
be buying what the real experts fly but 
my physical handicaps keep me out of 
that class. I still enjoy designing models 
and flying contests so designing a 
sailplane to match my skills and physical 
handicaps allow me to place higher at 
contests and enjoy all phases of my 
hobby. I even occasionally bring home 
a trophy. This article explains how I did 
that. Maybe it will give you ideas.

When RES became a popular event, 
I pulled my 1983 sailplane out of the 
attic and even built a new version with a 
more modern airfoil. By 2000, I needed 
a better contest RES sailplane so I 
designed one. Since I gave up flying F3B 
many years ago, I have designed my 
sailplanes to give me the best chance of 
getting a 10 minute flight and a landing 
considering my skills and handicaps. 

I emphasize the three abilities and 
compromise performance as necessary 
to achieve these goals. The three abilities 
are stability, visibility, and controllability. 
My article on the Three Abilities in the 
April, 2008 RC Soaring Digest explains 
why. This article tells how I used the 
three abilities to design my 2006 
sailplane, LilAn II.

I began design of the first LilAn while 
recovering from an illness in December 
1999. Since I couldn’t work in the shop, 
I spent my spare time researching 
and writing specifications for an RES 
sailplane. For the first time in many 
years, I did some real designing before 
starting construction and actually wrote a 
specification for my new design.

The LilAn is an RES sailplane designed 
around my skills and handicaps. It will be 
of conventional construction and as large 

as possible within the limits of standard 
winches and my ability to launch it 
in moderate wind. It must be able to 
thermal at the limits of my visual range 
with minimum control input. Normal 
flying will be with controls in low rate 
with control throws set at the minimum 
required for launching and landing with 
high rate for flying when more control 
power is needed. Linear approximation 
of elliptical dihedral as used on my 1974 
Tern IV will be used for its good handling 
qualities. Speed, sink rate, and zoom 
performance will be compromised if 
necessary to give the stability required 
to maximize overall performance. The 
model must fit in my van by removing 
only the outer wing panels and be ready 
to fly within two minutes after arriving 
at the model field. Sailplanes with wing 
spans over 148 inches are difficult for me 

Chuck Anderson, chucka12@outlook.com

Designing for the
Three Abilities
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to launch in wind so wingspan will be less that 142 inches.

Aerodynamic design will be based on my two most recent 
designs; Aurora and Sirius II. The Aurora was a composite 
full house sailplane I designed in 1995 and the Sirius II was 
a 1999 update of my 1983 sailplane. My 1974 standard class 
Tern IV weighed 32 ounces but was seldom flown with less 
than 4 ounces of ballast. Models with wing loading of 8 oz 
per square foot have always thermaled well for me and lighter 
wing loadings make the model harder to fly in turbulence. 
Light weight models are usually more fragile so I no longer go 
to extremes to reduce model weight and reduce the need for 
adding ballast.

Not much stab area is required for pitch control but small stabs 
do not provide satisfactory pitch damping and decreases pitch 
stability. Many years ago, I built three stabs with areas of 8%, 
12%, and 16% of the wing area and flew them on the same 
model. All were satisfactory for pitch control but the bigger 
stabs were easier to fly smoothly. The only disadvantage of the 
large stab was the extra weight that had to be added to the 
nose.

Larger models are more visible but maximum size has already 
been set by launch requirements. Modern low drag fuselages 
are harder to see at long range. About 10 years ago, I was 
using a Compulsion as my main unlimited competition model 
and bought a model that had a Compulsion wing mounted on 
an Ava fuselage for a backup. I expected the Ava-Compulsion 
hybrid to fly like the Compulsion and was surprised how much 
harder it was to work distant thermals because I couldn’t see 
it as well as the Compulsion. When I designed the LilAn II 
fuselage, I resisted the temptation to make the fuselage as slim 
as possible.

Model criteria developed from these studies resulted in a wing 
span of 138 inches and a root chord of 11 inches. Wing Area 
turned out to be 1250 square inches and aspect Ratio of 14.1 
for a wing loading of 8 oz. per/sq. ft. The wing planform will be 

conventional with straight ¼ chord line. The dihedral will be 
a linear approximation of elliptical dihedral. My experiments 
with nonplanar wings were reported in the June 2013 issue 
of RCSE. The tail will be cruciform for ease of transmitter 
programming and simple pushrod installation. The stab will 
be 15% of wing area for good pitch damping. The spoilers will 
be in the outboard wing panels to minimize pitch effects when 
deployed.

I selected the SD 7032 for the root airfoil transitioning to the 
SD7037 at the first dihedral joint. The SD7032 is a thicker 
version of the SD7037airfoil and was used for additional wing 
strength at the root. These airfoils were used for both Aurora 
and Sirius II with good results. Wing structure will be that 
used on the Sirius, the last built up wing for which I did a full 
structural analysis.

There were two changes made before the first LilAn was 
built in 2001. The first change was to use a Legion fiberglass 

Sirius II
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fuselage given to me by Roy Simpson at the 2000 Nats. It was 
a very clean fuselage with a very heavy molded fin. I cut off the 
fin and substituted a balsa fin from my Aurora cutting over two 
ounces from the tail. The second change was to switch to the 
more fashionable Schumann wing planform 

The LilAn had very good performance but failed to live up to 
the controllability requirement and the carbon fiber reinforced 
spruce wing spars failed when it hit a very strong thermal at 
the start of a zoom at the 2001 Nats. The LilAn was repaired 
sufficiently to withstand careful launches and a series of 
modifications to improve controllability were tested whenever 
I had the time and was in the mood for experimenting. Final 
modifications were completed in the summer of 2004. Dihedral 
of the outer wing panels was increased and a large increase in 
fin and rudder area was necessary to bring controllability up 

LilAn I

LilAn II Prototype

LilAn I final fin and rudder
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to the Sirius that I had been flying since 
1983.

After the LilAn wing failure, I abandoned 
spruce and now use only carbon fiber 
for spar caps. While I can do stress 
analysis of wood wings, modern 
composites came long after my last 
aircraft structures class. Since I had no 
experience with carbon fiber spars, I 
did the next best thing. I copied the real 
experts. After searching all the notes 
on carbon fiber that I had collected, I 
decided to base my wing spars on Mark 
Drela’s Bubble Dancer.

The LilAn had a 5-panel wing with 
fashionable Shuemann wing planform. 
I have followed development of the 
Shuemann wing since it first appeared in 
Soaring but have never found any wind 
tunnel data that verified the Shuemann 
wing’s theoretical advantages so I went 
back to the wing planform I have used for 
the last 30 years for LilAn II. The carbon 
fiber reinforced spruce I-beam spar was 
replaced by a carbon fiber spar based on 
Mark Drela’s Bubble Dancer. The spoilers 
were moved from the outboard panels 
to the center wing to reduce roll inertia 

and allow spoiler actuation by pull strings 
from a servo in the fuselage. Removing 
spoiler servos from the outer wing 
panels also speeded up time required to 
assemble the model.

Airfoils evaluated for LilAn II were AG35, 
MH32, SA35, and DP19. None showed 
any significant advantage over the others 
so I selected the AG35 because the flat 
bottom simplified construction.

The Legion fuselage was too short and 
had a stylish pointed nose so I built a 
set of molds and laid up a new fuselage 
that I could use for Unlimited and RES 
sailplanes. The new fuselage has a 
longer tail boom and a tangent ogive 
nose replaced the pointed nose which let 
the battery and servos move forward. 

Flight testing went well and the wing 
could take full pedal-to-the-metal 
launches so I built a new version with a 
few improvements based on initial flight 
tests. The dihedral of the outboard wing 
panels was increased from 7.5 degrees 
to 10 degrees, one degree of washout 
was added to the outboard wing panels, 
and the height of the fin and rudder was 
increased by 1/2 inch. Photographs 
taken while building the second LilAn II 
were used to illustrate an RC Group 
build thread on “Building Without Plans 
or Lasercut Ribs.” I had intended for the 
prototype to be my backup RES model 
for 2007. Unfortunately, it failed it’s final 
structural test — high speed oak tree 
penetration!

LilAn II by Charlie Bair
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The LilAn II prototype dimensions were:

	 Wing Span 132 inches
	 Wing Area 1150 square inches
	 Aspect Ratio 15
	 Weight 68 oz.

One LilAn was built at 60 ounces but 
showed no better thermal performance 

so no special effort was made to 
minimize weights of later versions and 
they were built from my stock of balsa 
that had already been picked over for the 
best wood.

The 48 inch span center wing panel 
lets the LilAn fit in my Honda van by 
removing only the outboard wing panels. 

The Sirius charge mounted in my van lets 
me charge all batteries on the way to the 
field. Since the outboard wings have no 
servos or controls, it only takes a couple 
of minutes to tape the outer wing panels 
in place and be ready to fly. 

Designing a model around my handicaps 
has let me continue flying long after I 
would have had to quit if I had been 
flying many of the very high performance 
sailplanes now on the market. LilAn has 
even let me win a few trophies over the 
last 6 years. 

For me, the LilAn performs at least as 
well as the Ava Pro and it’s my own 
design. Seven LilAn IIs have been built 
by Charlie Bair and me. A new LilAn 
fuselage was modified to house electric 
motor and prop and flown with a LilAn II 
wing for ALES contests. LilAn has one 
other advantage. The LilAn materials cost 
less than half as much as the Super Ava I 
bought to fly RES in the 2006 Nats when 
the LilAn II wasn’t quite ready.

Finally, the origin of the name. About 
30 years ago, while researching a 
construction project, I ran across one 
of the definitions of Lil and thought 
that it would be a good name for a 
model. Lil is a 5000 year old word from 
Sumer meaning Sky. Combine Lil with 
the Sumer word for God give LilAn or 
SkyGod.

A pair of LilAns
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I have written a bunch of articles on these topics, but it seems 
as soon as I complete one a light comes on that calls for yet 
another article on the topic.
This time I had purchased a basket case of a mistreated, 
used and abused Super AVA with both an electric launch 
fuselage and a standard fuselage. I stripped all the covering, 
replaced superglue-covered broken ribs, replaced all the wiring 
harnesses, updated the wing connectors, tidy’d up the receiver 
mountings, repaired cracks in the fuselage pods, installed the 
latest slop-free metal cased micro-digital servos... and even cut 
flaps into the center panel so that it could function well in ALES 
or RES events depending on the fuselage choice. It was a LOT 
of work but very rewarding as it looks new.
But it was the flying of the two fuselages that had me a bit 
stumped. Now at this point in the hobby I never bother with 
measuring CG since I know that all our birds balance at about 
45% of root chord. So I basically do a rough thumb balance - 
check to see that its more than halfway toward the leading edge 
- and then give it a light hand toss. I know if does pitch up, just 
floats out and doesn’t drop her nose first at the end of the flight, 
its likely pretty good. 
 Both fuselages have their own stab and tail surface servos. The 
electric-launch fuselage servos are mounted in the back just in 
front of the vertical on the side of the boom with very short bits 
of linkage, and so there is no flexing or loose movement of the 
elevator... none. The RES fuselage has the servos in the nose 

Trim, Slop, Balance
Gordy Stahl, GordySoar@aol.com

Which Is It? CG - Incidence - Elevator Slop - Flexing
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with carbon pushrods securely attached 
their full length, and very little movement 
of the elevator when firm pressure is 
applied to the elevator trailing edge.
 The Electric Launch version flew the 
way AVA’s do... mindlessly, predictably, 
regardless of conditions or airspeed. 
However the RES version (same wing 
remember!) acted weird. Flying along 
hands off, it would suddenly balloon 
nose up. Then, with the slightest touch of 
down to compensate, it would dive fairly 
dramatically. Once settled it was fine.
Now is a good time to recount an 
important story about chasing the 
wrong fix:
I was at a contest and had just landed as 
I walked past a fellow pilot at the winch 
preparing to launch a Supra. He was 
messing with his transmitter program 
settings. I asked what was up and he 
said, “I can’t seem to get this thing to 
launch well! I have moved the tow hook 
around, played with various trailing edge 
launch camber settings, put up and down 
elevator compensations in, yet I can’t 
seem to get the right settings.” I had been 
watching his launches and recognized his 
problem.
I told him to hold his model firmly 
because I was going to press on the back 

of the plane a bit. I put my finger on the 
back of his horizontal stabilizer and with 
the lightest pressure and was able to 
deflect it down more than 1/4"!
As I pushed you could see the pushrod 
buckling along its unsupported length! I 
then reminded him that it is the tail that 
directs the nose - specifically the trailing 
edge of the elevator - and as the model’s 
airspeed increases so does the workload 
on the elevator’s trailing edge... and 
never more so than when you want your 
model to pull up out of the bucket part of 
the launch ping.
The reason for recounting the story was 
that the pilot had spent weeks trying to 
figure out his launch problem, working 
endlessly with transmitter program 
gimmicks and tow hook settings, because 
those things were there to work with. 
He didn’t realize the possibility that it 
might be something so simple, after all 
he had “carbon pushrods and powerful 
digital servos!” The servos, it turns out, 
weren’t actually being used to do what 
he’d installed them to do because of 
the install. With all the other things that 
should be responsible for a good launch - 
camber, elevator compensation, tow hook 
location - well, they were just too in-your-
face to believe one of them was causing 

his frustration.
The one thing I left out was his comment 
about “maybe it’s my CG causing the bad 
launch, I added more lead to the nose....” 
ARGH!!!
 So that leads me to the next story 
about adding extra lead to fix 
something:
I showed up at a field one day in another 
part of the USA to do some flying with the 
local guys. A relatively new pilot who’d 
just moved up to a molded 3-meter ship 
came over and asked me if I’d help with 
its set up and balance because it just 
didn’t seem to fly well. Now that could 
mean he didn’t have the thumbs for a 
well tuned ship, but it usually meant 
somebody had helped him out by adding 
some extra lead to the nose. You know, 
to make it more stable for him.
After a quick check of things, I gave it my 
usual left handed gentle flat toss and, as 
usual, it nosed down toward the ground 
just in front of us. After pulling a few 
ounces of lead, it finally glided straight 
ahead about halfway across the field. He 
was elated an amazed. We put it up on 
the winch and found it didn’t launch very 
high, but he got the longest most relaxed 
flight of his life on that first flight and 
continued the day that way.
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I explained that he’d need to move the 
tow hook back in order to get a better 
launch but to fly it as is for awhile. A 
few weeks later I got an email from him 
saying that the local expert said that the 
“CG” was too far back and that’s why the 
model didn’t launch well, that moving the 
tow hook back would be dangerous, that 
the designer knew more about where 
the CG should be than Gordy did, so he 
put the lead back in and now it launches 
better again.
You of course likely already know what 
the extra nose lead did while the model 
was on tow - the added lead meant that 
in normal flight, the model needed more 
up trim to hold level. Sure, it would cause 
it to porpoise with airspeed changes, 
but on tow it would force the nose to 
rotate against the tow line pull. Instead of 
thinking through what causes what, and 
what controls what, he didn’t get what he 
wanted, he got what he was given.
All these things can affect your 
models flight characteristics :
 • Flexing wood or foam elevators and tail 
booms 
 • Sloppy hinges that allow the elevator to 
deflect under pressure 
 • Sloppy servo shafts 
 • A servo that drifts 

 • Sloppy connector holes 
 • Loose covering on the elevator  
 • Incidence - a big one for V-tails 
and articulated horizontal stabilizers 
(“standard” split stab/elevators) 
 • Balance point
With a full flying stabilizer, the modeler 
can adjust its angle in reference to the 
chord line of the wing (a line drawn 
through the airfoil starting at the pointy 
edge in front to the center of the trailing 
edge). Since it is the tail that directs the 
nose, then If the line drawn through the 
horizontal stabilizer is not parallel to the 
wing chord line, the model will go where 
the elevator is angled. Nose lead is used 
to keep the airfoil doing what we want it 
to, but often nose lead is used to “fight” 
the elevator’s guidance, or to hobble the 
model to compensate for a lack of pilot 
skill, or to dampen pitch reaction in the 
case of a talented contest pilot.
The confusion happens when the model 
has a fixed horizontal stabilizer (the 
front part that doesn’t move). That setting 
IS the elevator trim, but it’s unmovable 
with the transmitter trim lever. It’s fixed. 
Okay, sure you can sort of change 
things by bending the back part, but the 
back part is small compared to the front 
part, so the front part can be a bully, 

depending on the model’s airspeed, since 
airspeed empowers or un-powers tail 
feathers.
The Origination of the Dive Test and 
Why It Can Be Deceiving:
In the early years, most models had fixed 
stabs with elevators (articulated stabs), 
but they also had flexy... well everything! 
And to complicate things more, if their 
airspeed got high enough say in a dive, 
the wings would blow up or off! So 
lead was used as an active part of the 
airframe’s design “protection,” and a lot 
of how models were balanced came from 
the full size design mandate of designing 
to protect the pilot inside against 
uncomfortable flight characteristics and
g-forces. Models were mostly designed 
with a lot of up incidence (the alignment 
of the horizontal stab to the wing chord 
line) and extra nose lead to keep the 
sailplane from porpoising with minor 
airspeed changes, but mostly to protect 
the model from tucking (increasing its 
dive angle as airspeed increased during 
a dive) and blowing up in the air. 
Sailplane guys quickly picked up on the 
Dive Test to check to insure their models 
didn’t “tuck” into an increasing speedy 
destructive dive. Plenty of up incidence 
set in the horizontal stab, so when the 
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pressure increased - twisting the stab 
edge down and forcing the elevator down 
- they only were forced down to just about 
level, not beyond. Yes, a lot of extra nose 
lead was needed for calm level flight, 
but the models were protected against 
tucking.
(One caveat - not all sailplane pilots 
followed this practice, many advanced 
builder pilots were aware off all this, and 
were building and setting up so that they 
didn’t need the crooked stab settings/
extra lead, and were winning.)
Fixed stab incidence locks that part of 
the equation, changing the nose weight 
changes what the wing wants to do, 
but that changes what the stab should 
be doing, so the pilot is stuck with what 
angles are glued. That knowledge drove 
the trend toward full flying stabs. But 
what incidence has to do with this story, 
is that if your model has a fixed stab, your 
changes to a desired change are limited.
Wait a second! Some of the newest 
molded competition sailplane designs 
now have V-tails or fixed articulated 
horizontal stabs - have the gods gone 
crazy???
Nope! Now that airframes, servos, 
linkage systems and materials have 
made our models mostly flex-free and 

slop-free, AND we now know that pretty 
much all task sailplanes will balance 
well for task flying at about 45% of root 
chord, using a fixed stabilizer makes a 
lot of good sense. Instead of changing 
incidence as with a full flying stabilizer, 
the articulated stab changes its camber to 
change the pitch direction of the nose.
They are simpler to build, the fixed part is 
always providing some constant uniform 
direction, and the elevator can be tiny. So 
less weight, less force, smaller servos, 
thinner pushrods and likely smoother 
more defined pitch control is possible. 
And for those who think V-tails look sexy, 
a bonus!
Okay so back to my AVA project: 
You’d think at this point I should know 
what would cause my RES fuselage set-
up to track erratically! Well, it didn’t seem 
like I had enough loose deflection at the 
stabs trailing edge, and there was nothing 
in the linkage that might cause the model 
to pitch up, or tuck, yet it did both. Ah 
hah! It must be a wonky servo. The servo 
must be drifting in flight. Lame guess, I 
know, but I replaced it anyway... and it 
didn’t change anything.
I went over all the linkages, etc. just 
to insure that for sure that was not 

the cause, then flew it again... with no 
change. 
I had only one card left - and it was 
gonna kill me to use it. Add some lead to 
the nose... ARGH!
Well guess what? It turns out that the 
balance point was right on the cusp of 
being neutral. The model glided out of 
my hand, didn’t pitch up or down on a 
firm toss, but it did seem to settle a bit 
“back” when I held it to a stop in the air 
on a hand toss. But it also couldn’t decide 
what angle to fly at, so the too little bit 
of nose weight kept it confused in flight. 
Turns out “a little dab’ll do ya” applied in 
this case. Nose weight is good if its just 
enough. Too many pilots don’t find the 
spot during their initial prep that is just 
a bit too little, then add. They add to too 
much already.
In the end, it was the simplest reason....
and in the end I did my investigations in 
the right order... simplest last!
Hope this adventure helps you this 
season with your soaring projects! If you 
have questions or comments feel free to 
write to me at GordySoar@aol.com

mailto:GordySoar@aol.com
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I needed a contour gauge a bit deeper than what is available 
(for a reasonable price) at Home Depot, Walmart, Harbor 
Freight, etc. Most have a measuring depth of around 2". 
Soooo... I made exactly what I needed. 
Materials:
A bunch of sticks. 
(2) 1 inch to 1.5 inch x 1/4 inch strips. Whatever length you want 
the gauge to be.
(2) Machine screws with nuts.
(2) Plastic tubing cut to width of sticks. These slip over the 
screws, but are not needed for skewers or small sticks. 
You can use skewers, popsicle sticks, stirring sticks, tongue 
depressors, etc. I found that tongue depressors are thinner 
than popsicle sticks, so decided they would be best for my 
application. I use it mostly for woodturning, but figured it would 
come in handy for copying other profiles. 
Just cut your strips to length, drill holes for the screws, add the 
tubes and screw together. Then you can stack your sticks in and 
adjust the tightness. You want it loose enough that the sticks will 
move, but not so loose that they fall out. 

Tom’s
ips

Contour Gauge

Tom Broeski, T&G Innovations LLC, tom@adesigner.com

Assembled contour gauge ready to use

It really comes in handy when you want the shape or 
measurement of a servo tray or bulkhead when you can’t get 
inside to measure. Don’t forget to subtract two times the wall 
thickness! 
Need to get the airfoil shape for a specific part of a wing? Not 
many other ways to do it. The thinner the sticks, the smoother 
the contour.  Really nice if you need to get the shape of a rib 
for a built up plane when you don’t want to rip the wing apart or 
don’t have the plans.
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Contour gauge parts Contour gauge holder with plastic tubing over screws

Wing contour

Above: Outside servo tray contour

Right: Servo tray contour allowing 
for fuselage wall thickness
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Although this shop fixture was constructed for handling full size sailplanes, 
there have been a number of instances where one of these would have 
come in handy while constructing our scale and cross-country machines. 
Easily scaled and relatively inexpensive, we think this solution is certainly 
worth consideration. — B2

Not everyone has access to fancy equipment to rotate the glider when 
working on it, but everyone surely would like to have something to help 
keep the glider in a rotated position. So Neal came up with a “rotisserie” 
design that you can build from plywood to make the hard work of 
sanding, etc. much easier.

The drawing below shows how to make a wooden ring from a single
4x4-foot sheet of plywood. Six 120-degree segments may be cut from the 
sheet with material left over to build a roller base. The segments are glued 
together in two layers so that they overlap by 60 degrees. The layers are 
shifted slightly in the figure to highlight each ring. The resulting ring has 
an outside diameter of about 54" and inside about 48".

Neal Pfeiffer

Reprinted from Bungee Cord, the Voice of the Vintage Sailplane Association, Volume 39 No. 4, Winter 2013

Neal Pfeiffer sanding the nose of the Ka-6BR fuselage, held tightly in 
position in a ring, similar to those used in the Schempp-Hirth factory.

A “Rotisserie” for Gliders
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The Ka-2b is shown installed in a wooden ring or “rotisserie” with additional 
supports made from 2"x4" lumber. 




